Algebra 2 Semester 1 Exam Review

To which set of numbers does the number belong?

1. (1 point) \(\sqrt{32} \)
 a. irrational numbers
 b. rational numbers

Which algebraic expression models the given word phrase?

2. (1 point) 7 times the sum of \(a \) and \(b \)
 a. \(a + b \)
 b. \(7(a - b) \)
 c. \(7(a + b) \)
 d. \(7a + b \)

Evaluate the expression for the given value of the variable(s).

3. (1 point) \(|2b - 4| + |1 - b^2| - b^3; b = -2 \)
 a. 5
 b. 21
 c. 19
 d. 11

Solve the equation.

4. (1 point) \(9y + 13 = 5(y - 4) \)
 a. \(y = -4 \frac{1}{4} \)
 b. \(y = -4 \frac{1}{17} \)
 c. \(y = -8 \frac{1}{4} \)
 d. \(y = -4 \frac{4}{33} \)

5. (1 point) \(x^2 - 14x + 49 = 100 \)
 a. \(-17, 17\)
 b. \(-3, 17\)
 c. \(-17, 3\)
 d. \(-3, 3\)

Solve the equation or formula for the indicated variable.

6. (1 point) \(T = \frac{5U}{E} \), for \(U \)
 a. \(U = \frac{TE}{5} \)
 b. \(U = T + \frac{E}{5} \)
 c. \(U = \frac{T - E}{5} \)
 d. \(U = 5T - E \)
Solve the absolute value equation. Graph the solution.

7. (1 point)
 \[3|3x + 4| + 2 = 8\]
 a. \(x = \frac{2}{3}\) or \(x = -2\)
 b. \(x = \frac{2}{9}\) or \(x = -\frac{5}{9}\)
 c. \(x = \frac{2}{9}\) or \(x = -\frac{2}{3}\)
 d. \(x = \frac{2}{9}\) or \(x = -2\)

Solve the inequality. Graph the solution.

8. (1 point)
 \(|2x + 2| \geq 26\)
 a. \(x \leq -28\) or \(x \geq 24\)
 b. \(x \leq -12\) or \(x \geq 12\)
 c. \(x \geq -14\) or \(x \leq 12\)
 d. \(x \leq -14\) or \(x \geq 12\)

9. (1 point)
 \(|2x + 4| \leq 10\)
 a. \(-14 \leq x \leq 6\)
 b. \(-7 \leq x \geq 3\)
 c. \(-7 \leq x \leq 3\)
 d. \(x \leq -3\) or \(x \geq 3\)

What is an equation of the line in slope intercept form?

10. (1 point)
 \(m = -6\) and the \(y\)-intercept is \((0, 3)\)
 a. \(y = -6x - 3\)
 b. \(y = 3x - 6\)
 c. \(y = -6x + 3\)
 d. \(y = -3x - 6\)
Write an equation of the line, in point-slope form, that passes through the two given points.

11. (1 point)
points: (−2, 13), (3, −12)

 a. \(y - 13 = -\frac{1}{5}(x + 2) \)
 b. \(y - 13 = -5(x + 2) \)
 c. \(y - 2 = -5(x - 13) \)
 d. \(y - 2 = -\frac{1}{5}(x + 13) \)

What are the intercepts of the equation? Graph the equation.

12. (1 point)
\(-5x + 6y = -30\)

 a. \(x\)-intercept: (6, 0)
 \(y\)-intercept: (0, −5)
 b. \(x\)-intercept: (6, 0)
 \(y\)-intercept: (0, −5)
 c. \(x\)-intercept: (−5, 0)
 \(y\)-intercept: (0, 6)
 d. \(x\)-intercept: (−5, 0)
 \(y\)-intercept: (0, 6)
13. (1 point)
Find the domain and range of the relation and determine whether it is a function.

Is the relation a function?

14. (1 point)

For each function, what is the output of the given input?

15. (1 point)
For \(f(x) = -4x - 1 \), find \(f(3) \).

a. \(-7\) b. \(-13\) c. \(-11\) d. \(11\)
16. (1 point)
If a function, \(f(x) \) is shifted to the left four unit(s), what function represents the transformation?

a. \(f(x + 4) \)
 b. \(f(x - 4) \)
 c. \(f(x) - 4 \)
 d. \(f(x) + 4 \)

17. (1 point)
Identify the vertex and the axis of symmetry of the graph of the function \(y = -3(x - 3)^2 + 2 \).

a. vertex: (3, -2); axis of symmetry: \(x = 3 \)
 b. vertex: (3, 2); axis of symmetry: \(x = 3 \)
 c. vertex: (-3, -2); axis of symmetry: \(x = -3 \)
 d. vertex: (-3, 2); axis of symmetry: \(x = -3 \)

18. (1 point)
Identify the maximum or minimum value and the domain and range of the graph of the function \(y = 2(x + 3)^2 - 4 \).

a. minimum value: -4
 domain: all real numbers
 range: all real numbers \(\geq -4 \)
 c. maximum value: -4
 domain: all real numbers
 range: all real numbers
 b. maximum value: 4
 domain: all real numbers
 range: all real numbers \(\leq 4 \)
 d. minimum value: 4
 domain: all real numbers \(\geq 4 \)
 range: all real numbers

19. (1 point)
A catapult launches a boulder with an upward velocity of 100 ft/s. The height of the boulder, \(h \), in feet after \(t \) seconds is given by the function \(h = -16t^2 + 100t + 30 \). How long does it take the boulder to reach its maximum height? What is the boulder’s maximum height? Round to the nearest hundredth, if necessary.

a. 6.25 s; 30 ft
 b. 3.13 s; 498.75 ft
 c. 3.13 s; 186.25 ft
 d. 3.13 s; 292.5 ft
20. (1 point)
Which is the graph of \(y = (x - 3)^2 + 3 \)?

a.

b.

c.

d.

21. (1 point)
What steps transform the graph of \(y = x^2 \) to \(y = -3(x - 3)^2 + 3 \)?

a. reflect across the x-axis, translate 3 units to the left, translate down 3 units, stretch by the factor 3
b. translate 3 units to the left, translate down 3 units, stretch by the factor 3
c. translate 3 units to the right, translate up 3 units, stretch by the factor 3
d. reflect across the x-axis, translate 3 units to the right, translate up 3 units, stretch by the factor 3

22. (1 point)
Suppose a parabola has vertex \((7, -8)\) and also passes through the point \((8, -6)\). Write the equation of the parabola in vertex form.

a. \(y = 2(x - 7)^2 + 8 \)

b. \(y = 2(x + 7)^2 - 8 \)

c. \(y = 2(x - 7)^2 - 8 \)

d. \(y = (x - 7)^2 - 8 \)
What is the vertex form of the equation?

23. (1 point)
 \[y = x^2 - 6x + 7 \]
 a. \[y = (x + 3)^2 + 2 \]
 b. \[y = (x + 3)^2 - 2 \]
 c. \[y = (x - 3)^2 + 2 \]
 d. \[y = (x - 3)^2 - 2 \]

What is the maximum or minimum value of the function? What is the range?

24. (1 point)
 \[y = 2x^2 + 12x - 2 \]
 a. minimum value: \(-20\)
 range: \(y \geq -3 \)
 b. minimum value: \(-20\)
 range: \(y \geq -20 \)
 c. minimum value: \(-3\)
 range: \(y \geq -3 \)
 d. minimum value: \(3\)
 range: \(y \geq 3 \)
What is the graph of the equation?

25. (1 point)
\[y = -2x^2 - 2x - 1 \]

What is the expression in factored form?

26. (1 point)
\[x^2 - 16x + 63 \]
a. \((x - 9)(x + 7)\)
b. \((x - 9)(x - 7)\)
c. \((x - 7)(x + 9)\)
d. \((x + 7)(x + 9)\)
What is the expression in factored form?

27. (1 point)
\(-2x^2 + 4x + 30\)

a. \(-2(x - 5)(x - 3)\)
b. \(-2(x + 5)(x - 3)\)
c. \(-2(x + 5)(x + 3)\)
d. \(-2(x - 5)(x + 3)\)

28. (1 point)
\(9x^2 - 30x + 25\)

a. \((-3x - 5)^2\)
b. \((3x - 5)^2\)
c. \((3x - 5)(-3x + 5)\)
d. \((3x + 5)^2\)

What are the solutions of the quadratic equation?

29. (1 point)
\(5x^2 + 32x + 35 = 0\)

a. \(-5, 5\)
b. \(-\frac{7}{5}, -1\)
c. \(-5, -\frac{7}{5}\)
d. \(5, -1\)

What is the number of real solutions?

30. (1 point)
\(-5x^2 = 9x - 4\)

a. cannot be determined
b. two solutions
c. one solution
d. no real solutions

Simplify the number using the imaginary unit \(i\).

31. (1 point)
\(\sqrt{-16}\)

a. 4
b. -4
c. 16i
d. 4i

Simplify the expression.

32. (1 point)
\((1 - 2i) + (-2 - 2i)\)

a. \(-1 - 4i\)
b. \(-5i\)
c. \(-1 - 4i\)
d. \(1 + 4i\)
33. (1 point)
(5 − 3i)(1 − 2i)

a. 11 − 13i

b. 5 + 6i

c. 63 − 13i

d. −1 − 13i

34. (1 point)
\[
\frac{4−3i}{5−i}
\]

a. \[
\frac{17−11i}{26}
\]

b. \[
\frac{23+19i}{26}
\]

c. \[
\frac{23−11i}{26}
\]

d. \[
\frac{23−11i}{24}
\]

35. (1 point)
Classify \(6x^3 + 2x^4 − 5x^3 + 11\) by degree.

a. quintic

b. quartic

c. quadratic

d. cubic

36. (1 point)
Classify \(3x^4 − 4x^3 − 2x^2\) by number of terms.

a. polynomial of 4 terms

b. binomial

c. trinomial

d. polynomial of 5 terms

Consider the leading term of each polynomial function. What is the end behavior of the graph?

37. (1 point)
\(5x^7 − 4x\)

a. The leading term is \(5x^7\). Since \(n\) is odd and \(a\) is positive, the end behavior is down and up.

b. The leading term is \(5x^7\). Since \(n\) is odd and \(a\) is positive, the end behavior is up and down.

c. The leading term is \(5x^7\). Since \(n\) is odd and \(a\) is positive, the end behavior is down and down.

d. The leading term is \(5x^7\). Since \(n\) is odd and \(a\) is positive, the end behavior is up and up.
38. (1 point)
Graph \(y = 4x - x^3 \). How many turning points are there?

\[\text{There are no turning points.} \]

\[\text{There are two turning points.} \]

Write the polynomial in factored form.

39. (1 point)
\[x^3 - 8x^2 + 12x \]
a. \(x(x - 6)(x - 2) \)
b. \(-2x(x + 1)(x - 6) \)
c. \(-6x(x - 2)(x + 1) \)
d. \(x(x - 2)(x + 6) \)

40. (1 point)
What is a cubic polynomial function in standard form with zeros 5, -3, and 2?

\[f(x) = x^3 + 4x^2 - 11x - 15 \]
a. \(f(x) = x^3 + 4x^2 - 11x - 15 \)
b. \(f(x) = x^3 + 4x^2 - 13x + 30 \)
c. \(f(x) = x^3 - 4x^2 - 11x + 30 \)
d. \(f(x) = x^3 + 4x^2 + 11x + 30 \)
What are the zeros of the function? Graph the function.

41. (1 point)
\[y = (x + 3)(x - 3)(x - 5) \]
a. 3, −3, −5
b. 3, −3, 5
c. −3, 3, −5
d. −3, 3, 5

What are the zeros of the function? What are their multiplicities?

42. (1 point)
\[f(x) = x^4 + 3x^3 + 2x^2 \]
a. the number 0 is a zero of multiplicity 2; the numbers 2 and 1 are zeros of multiplicity 1
b. the numbers 2 and 1 are zeros of multiplicity 2; the number 0 is a zero of multiplicity 1
c. the numbers 0 and −2 are zeros of multiplicity 2; the number −1 is a zero of multiplicity 1
d. the number 0 is a zero of multiplicity 2; the numbers −2 and −1 are zeros of multiplicity 1
What are the real or imaginary solutions of each polynomial equation?

43. (1 point)
 \[x^4 - 20x^2 + 64 = 0 \]
 a. 4, -4
 b. 4, -4, 2, -2
 c. 4, -2
 d. no solution

Find the real solutions of the equation by graphing.

44. (1 point)
 \[x^2 - x + 2 = 0 \]
 a. \(x = 1 \)
 b. \(x = 2 \)
 c. no solution
 d. \(x = 3 \)

45. (1 point)
 Divide \(-x^3 - 4x^2 - 2x + 3\) by \(x + 2\).
 a. \(-x^2 - 6x - 6, R\ 7\)
 b. \(-x^2 - 2x + 2, R\ -1\)
 c. \(-x^2 - 2x + 2\)
 d. \(-x^2 - 6x - 6\)

46. (1 point)
 Is \((x + 4)\) a factor of \(P(x) = -5x^3 - 15x^2 + 15x - 20\)? If it is, write \(P(x)\) as a product of two factors.
 a. yes: \(P(x) = (x - 4)(-5x^2 + 5x - 5)\)
 b. yes: \(P(x) = (x + 4)(-5x^2 + 5x - 5)\)
 c. \((x + 4)\) is not a factor of \(P(x)\)
 d. yes: \(P(x) = (x + 4)(-5x^2 - 5x - 5)\)

Find all the zeros of the equation.

47. (1 point)
 \[-9x^2 - 400 = -x^4\]
 a. 5, -5, 4i, -4i
 b. 5, 4i
 c. -5, -4i
 d. 5, -5, 4i, 0

What is the equation of \(y = x^3\) with the given transformations?

48. (1 point)
 horizontal translation right 11 units and vertical translation down 2 units
 a. \(y = (x - 11)^3 - 2\)
 b. \(y = (x + 11)^3 - 2\)
 c. \(y = (x + 2)^3 + 11\)
 d. \(y = (x - 2)^3 + 11\)
Find the real-number root.

49. (1 point)
\[\sqrt[3]{\frac{125}{343}} \]
- a. \(\frac{25}{49} \)
- b. \(\frac{125}{343} \)
- c. \(-\frac{125}{1029} \)
- d. \(\frac{-5}{7} \)

What is a simpler form of the radical expression?

50. (1 point)
\[\sqrt[3]{343x^21y^6} \]
- a. \(7x^7y^2 \)
- b. \(21x^21|y^6| \)
- c. \(21|x^{21}|y^6 \)
- d. \(7x^7|y^2| \)

Multiply and simplify if possible.

51. (1 point)
\[\sqrt{20} \cdot \sqrt{2} \]
- a. \(2\sqrt{10} \)
- b. \(\sqrt{40} \)
- c. \(10\sqrt{2} \)
- d. not possible

What is the simplest form of the product?

52. (1 point)
\[\sqrt[3]{8x^8} \cdot \sqrt[3]{3x^2} \]
- a. \(2x^3 \cdot \sqrt[3]{3x} \)
- b. \(\sqrt[3]{24x^{10}} \)
- c. \(2x^3 \cdot \sqrt[3]{3x^{10}} \)
- d. none of these

What is the simplest form of the expression?

53. (1 point)
\[\sqrt[3]{245} + \sqrt{45} - \sqrt{5} \]
- a. \(21\sqrt{5} \)
- b. \(9\sqrt{5} \)
- c. \(10\sqrt{5} \)
- d. \(58\sqrt{5} \)

What is the product of the radical expression?

54. (1 point)
\[(-2 - \sqrt{6})(-8 + \sqrt{6}) \]
- a. \(10 + 6\sqrt{6} \)
- b. \(10 + 16\sqrt{6} \)
- c. \(22 + 16\sqrt{6} \)
- d. \(-16 - 10\sqrt{6} \)
How can you write the expression with rationalized denominator?

55. (1 point)
\[
\frac{\sqrt{3} - \sqrt{6}}{\sqrt{3} + \sqrt{6}}
\]
(a) \(-1 - 2\sqrt{18}\)
(b) \(-3 - 2\sqrt{18}\)
(c) \(-3 + 2\sqrt{2}\)
(d) \(-9 - 2\sqrt{18}\)

56. (1 point)
Write the exponential expression \(3x^{\frac{3}{8}}\) in radical form.

(a) \(3\sqrt[8]{x^3}\)
(b) \(\sqrt[8]{3x^3}\)
(c) \(3\sqrt[3]{x^8}\)
(d) \(3^{\frac{3}{8}}\sqrt[8]{x^3}\)

57. (1 point)
Write the radical expression \(\frac{8}{7\sqrt[15]{x}}\) in exponential form.

(a) \(8x^{-\frac{15}{7}}\)
(b) \(8x^{\frac{15}{7}}\)
(c) \(8x^{-\frac{7}{15}}\)
(d) \(8x^{\frac{7}{15}}\)
Algebra 2 Semester 1 Exam Review

Answer Section

1. ANS: A PTS: 1 REF: 1-2 Properties of Real Numbers
 STA: L1.2.1
2. ANS: C PTS: 1 REF: 1-3 Algebraic Expressions
 STA: L1.2.1| A1.1.1
3. ANS: B PTS: 1 REF: 1-3 Algebraic Expressions
 STA: L1.2.1| A1.1.1
4. ANS: C PTS: 1 REF: 1-4 Solving Equations
 STA: L1.2.1| A1.2.8| A1.2.9
5. ANS: B PTS: 1 REF: 4-6 Completing the Square
 STA: L1.2.1| A1.2.8| A1.2.9
6. ANS: C PTS: 1 REF: 1-4 Solving Equations
 STA: L1.2.1| A1.2.8| A1.2.9
7. ANS: A PTS: 1 REF: 1-6 Absolute Value Equations and Inequalities
 STA: L1.2.1
8. ANS: D PTS: 1 REF: 1-6 Absolute Value Equations and Inequalities
 STA: L1.2.1
9. ANS: C PTS: 1 REF: 1-6 Absolute Value Equations and Inequalities
 STA: L1.2.1
10. ANS: C PTS: 1 REF: 2-3 Linear Functions and Slope-Intercept Form
 STA: L1.2.1| A2.1.3
11. ANS: B PTS: 1 REF: 2-4 More About Linear Equations
 STA: L1.2.1
12. ANS: A PTS: 1 REF: 2-4 More About Linear Equations
 STA: L1.2.1
13. ANS: A PTS: 1 REF: 2-1 Relations and Functions
 STA: L1.2.1| A2.1.1| A2.1.2| A2.1.3
14. ANS: B PTS: 1 REF: 2-1 Relations and Functions
 STA: L1.2.1| A2.1.1| A2.1.2| A2.1.3
15. ANS: B PTS: 1 REF: 2-1 Relations and Functions
 STA: L1.2.1| A2.1.1| A2.1.2| A2.1.3
16. ANS: A PTS: 1 REF: 2-6 Families of Functions
 STA: A2.4.1| A2.1.7| A2.4.2| A2.3.1| A2.3.3
17. ANS: B PTS: 1 REF: 4-1 Quadratic Functions and Transformations
 STA: A2.1.3| A2.2.2
18. ANS: A PTS: 1 REF: 4-1 Quadratic Functions and Transformations
 STA: A2.1.3| A2.2.2
19. ANS: C PTS: 1 REF: 9-2 Quadratic Functions
 STA: A3.5.1| A2.1.7| A2.3.1| A2.3.3| A3.3.1
20. ANS: B PTS: 1 REF: 4-1 Quadratic Functions and Transformations
 STA: A2.1.3| A2.2.2
21. ANS: D PTS: 1 REF: 4-1 Quadratic Functions and Transformations
 STA: A2.1.3| A2.2.2
22. ANS: C PTS: 1 REF: 4-1 Quadratic Functions and Transformations
 STA: A2.1.3| A2.2.2
<table>
<thead>
<tr>
<th>No.</th>
<th>ANS</th>
<th>PTS</th>
<th>STA</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>D</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-2 Standard Form of a Quadratic Function</td>
</tr>
<tr>
<td>24.</td>
<td>B</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-2 Standard Form of a Quadratic Function</td>
</tr>
<tr>
<td>25.</td>
<td>A</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-2 Standard Form of a Quadratic Function</td>
</tr>
<tr>
<td>26.</td>
<td>B</td>
<td>1</td>
<td>L2.1.5</td>
<td>4-4 Factoring Quadratic Expressions</td>
</tr>
<tr>
<td>27.</td>
<td>D</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-4 Factoring Quadratic Expressions</td>
</tr>
<tr>
<td>28.</td>
<td>B</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-4 Factoring Quadratic Expressions</td>
</tr>
<tr>
<td>29.</td>
<td>C</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-5 Quadratic Equations</td>
</tr>
<tr>
<td>30.</td>
<td>B</td>
<td>1</td>
<td>A2.1.3</td>
<td>4-7 The Quadratic Formula</td>
</tr>
<tr>
<td>31.</td>
<td>D</td>
<td>1</td>
<td>L2.1.5</td>
<td>4-8 Complex Numbers</td>
</tr>
<tr>
<td>32.</td>
<td>A</td>
<td>1</td>
<td>L2.1.5</td>
<td>4-8 Complex Numbers</td>
</tr>
<tr>
<td>33.</td>
<td>D</td>
<td>1</td>
<td>L2.1.5</td>
<td>4-8 Complex Numbers</td>
</tr>
<tr>
<td>34.</td>
<td>C</td>
<td>1</td>
<td>A2.1.3</td>
<td>5-1 Polynomial Functions</td>
</tr>
<tr>
<td>35.</td>
<td>A</td>
<td>1</td>
<td>A2.1.3</td>
<td>5-1 Polynomial Functions</td>
</tr>
<tr>
<td>36.</td>
<td>C</td>
<td>1</td>
<td>A2.1.3</td>
<td>5-1 Polynomial Functions</td>
</tr>
<tr>
<td>37.</td>
<td>A</td>
<td>1</td>
<td>A2.1.3</td>
<td>5-1 Polynomial Functions</td>
</tr>
<tr>
<td>38.</td>
<td>B</td>
<td>1</td>
<td>A2.1.3</td>
<td>5-1 Polynomial Functions</td>
</tr>
<tr>
<td>39.</td>
<td>A</td>
<td>1</td>
<td>A1.2.2</td>
<td>5-2 Polynomials, Linear Factors, and Zeros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.6</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>C</td>
<td>1</td>
<td>A1.2.2</td>
<td>5-2 Polynomials, Linear Factors, and Zeros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.6</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>D</td>
<td>1</td>
<td>A1.2.2</td>
<td>5-2 Polynomials, Linear Factors, and Zeros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.6</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>D</td>
<td>1</td>
<td>A1.2.2</td>
<td>5-2 Polynomials, Linear Factors, and Zeros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.6</td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>B</td>
<td>1</td>
<td>A1.2.5</td>
<td>5-3 Solving Polynomial Equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1.2.5</td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>C</td>
<td>1</td>
<td>A1.2.5</td>
<td>5-3 Solving Polynomial Equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1.2.5</td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>B</td>
<td>1</td>
<td>A1.1.5</td>
<td>5-4 Dividing Polynomials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1.1.5</td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>B</td>
<td>1</td>
<td>A1.1.5</td>
<td>5-4 Dividing Polynomials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1.1.5</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>A</td>
<td>1</td>
<td>A1.2.2</td>
<td>5-6 The Fundamental Theorem of Algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.6</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>A</td>
<td>1</td>
<td>A2.2.2</td>
<td>5-9 Transforming Polynomial Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2.1.6</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Ans</td>
<td>Pt</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>D</td>
<td>1</td>
<td>6-1 Roots and Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>A</td>
<td>1</td>
<td>6-1 Roots and Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>A</td>
<td>1</td>
<td>6-2 Multiplying and Dividing Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>A</td>
<td>1</td>
<td>6-2 Multiplying and Dividing Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>B</td>
<td>1</td>
<td>6-3 Binomial Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>A</td>
<td>1</td>
<td>6-3 Binomial Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>C</td>
<td>1</td>
<td>6-3 Binomial Radical Expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>A</td>
<td>1</td>
<td>6-4 Rational Exponents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>C</td>
<td>1</td>
<td>6-4 Rational Exponents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STA: A1.1.4</td>
<td></td>
</tr>
</tbody>
</table>